Macs in Chemistry

Insanely Great Science

IM-UFF: extending the Universal Force Field for interactive molecular modeling


An interesting development for those working in nano materials.

We have completed the development of IM-UFF (Interactive Modeling - UFF), an extension of UFF that combines the possibility to significantly modify molecular structures (as with reactive force fields) with a broad diversity of supported systems thanks to the universality of UFF. Such an extension lets the user easily build and edit molecular systems interactively while being guided by physically-based inter-atomic forces. This approach introduces weighted atom types and weighted bonds, used to update topologies and atom parameterizations at every time step of a simulation. IM-UFF has been evaluated on a large set of benchmarks and is proposed as a self-contained implementation integrated in a new module for the SAMSON software platform for computational nanoscience.

This contribution has been submitted to the Journal of Molecular Modeling.

SAMSON is a novel software platform for computational nanoscience. Rapidly build models of nanotubes, proteins, and complex nanosystems. Run interactive simulations to simulate chemical reactions, bend graphene sheets, (un)fold proteins. SAMSON’s generic architecture makes it suitable for material science, life science, physics, electronics, chemistry, and even education. SAMSON is developed by the NANO-D group at INRIA, and means “Software for Adaptive Modeling and Simulation Of Nanosystems”.


blog comments powered by Disqus