Macs in Chemistry

Insanely Great Science

A review of cApp

 

One of the most common tasks for those involved in cheminformatics is handling files containing molecular information, these files can be in a variety of file types and usually the task involved is relatively minor. cApp is Java application that provides a simple interface to a variety of everyday activities.

cApp requires JRE7 and uses the Chemistry Development Kit (CDK), an open-source Java library for chem- and bioinformatics, and associated software, JChemPaint as chemical editor, and routines developed within the Program Collection for Structural Biology and Biophysical Chemistry by the Hofmann group. Full details of cApp are described in a J Cheminformatics paper DOI.

You can read the review here.

Comments

Cresset update Torch and Forge

 

Cresset have just announced updates to both Torch V10.4 and Forge V10.4.

The update of Forge, a computational chemistry workbench for ligand-based design, includes over 170 new or improved features. Of particular note is Activity Atlas a new component enables you to summarize the SAR for a series into a visual 3D model that can be used to aid new molecule design. Forge V10.4 can now connect to an external web service, through a REST interface, to import external properties and data computed or retrieved by such web services as additional columns in the Molecules Table.

The latest version of Torch now includes Multi-parameter Optimization (MPO) options including condensing many activity and physicochemical properties into a single score representing the fit to the project profile, this has been coupled to an improved radial plot visualisation and tile display.

Comments

InChI, the IUPAC International Chemical Identifier

 

InChI is the International Chemical Identifier developed under the auspices of IUPAC and are intended to be unique identifiers, they are freely usable and non-proprietary; they can be computed from structural information and do not have to be assigned by some organization;most of the information in an InChI is human readable (in theory!).

A recent paper in J Cheminformatics DOI describes the design, layout and algorithms of InChI, if you want to understand or implement the code this is a great starting point.

The paper is organized as follows. First, we discuss the general concepts associated with chemical identifiers. Then we outline the design goals of InChI and our general approach, focussing on the InChI model of chemical structure and the hierarchical layered structure of the Identifier; the concept of Standard InChI is introduced. This is followed by a detailed description of each of the possible major InChI layers, accounting for molecular connectivity, charge, stereochemistry, isotopic enrichment, position of hydrogen atoms and bonding in metal compounds, and the sublayers associated with these layers. We then describe the workflow of InChI generation (normalization, canonicalization, and serialization stages), as well as generation of the compact hashed code derived from InChI (InChIKey); the related algorithms and implementation details are briefly discussed. Finally, we provide information about InChI Software, licensing, known problems/limitations, and future prospects for InChI.

The source code and documentation can also be downloaded from here http://www.inchi-trust.org/downloads/

Comments

Importing Open Source Malaria Project data

 

The Open Source Malaria project is trying a different approach to curing malaria. Guided by open source principles, everything is open and anyone can contribute. To date a lot of people around the world have made contributions and the project is at a very exciting stage. Whilst everyone can see the compounds that have been made and the biological data, it is often spread over multiple web pages and can be tricky to link molecule with identifier with data. Over the last couple of months a significant effort has been put into populating a spreadsheet with all the information.

Whilst this is useful for viewing results it is not ideal for trying to build predictive models. Vortex is a chemically intelligent data analysis and visualisation platform. This script provides a one-click access to the OSM data and creates a workspace containing all the data, and since it is linked to the live spreadsheet you will always have access to the latest data.

osmVortex

Comments

Installing Open Drug Discovery Toolkit (ODDT)

 

A recent paper in J Cheminformatics described Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field DOI a free and open source tool for both computer aided drug discovery (CADD) developers and researchers. Open Drug Discovery Toolkit is released on a permissive 3-clause BSD license for both academic and industrial use. ODDT’s source code, additional examples and documentation are available on GitHub.

To install ODDT on a Mac you first need to install the appropriate toolkits, the easiest way is to use Homebrew, I've written a page detailing how to do this here.

Once installed you can install ODDT using PIP as described here.

Comments